Abstract

The performances of quantum chemistry methods (i.e., DFT and ab initio) in calculating the structural and vibrational properties of phosphates and phosphorylated compounds have been evaluated. Diethyl-phosphate, phosphonic acid, dihydrogen phosphate anion, phosphoric acid dimer and protonated glycylphosphotyrosine dipeptide were selected for our study. Geometry and harmonic frequency deviations were investigated, pointing out the contribution of dispersion interactions on diethyl-phosphate, [Gly-pTyr+H](+) and the phosphoric acid dimer. The B3LYP-D functional, followed by CC2 and MP2 methods, revealed significant accuracy for frequency calculations of the majority of the phosphorylated compounds in comparison with available experimental data. These investigations provide a guide to the accurate computation of phosphorylated biological compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.