Abstract
This study aimed to analyze the accuracy of artificial intelligence (AI) for orthodontic tooth extraction decision-making. PubMed/MEDLINE, EMBASE, LILACS, Web of Science, Scopus, LIVIVO, Computers & Applied Science, ACM Digital Library, Compendex, and gray literature (OpenGrey, ProQuest, and Google Scholar) were electronically searched. Three independent reviewers selected the studies and extracted and analyzed the data. Risk of bias, methodological quality, and certainty of evidence were assessed by QUADAS-2, checklist for AI research, and GRADE, respectively. The search identified 1810 studies. After 2 phases of selection, six studies were included, showing an unclear risk of bias of patient selection. Two studies showed a high risk of bias in the index test, while two others presented an unclear risk of bias in the diagnostic test. Data were pooled in a random model and yielded an accuracy value of 0.87 (95% CI = 0.75-0.96) for all studies, 0.89 (95% CI = 0.70-1.00) for multilayer perceptron, and 0.88 (95% CI = 0.73-0.98) for back propagation models. Sensitivity, specificity, and area under the curve of the multilayer perceptron model yielded 0.84 (95% CI = 0.58-1.00), 0.89 (95% CI = 0.74-0.98), and 0.92 (95% CI = 0.72-1.00) scores, respectively. Sagittal discrepancy, upper crowding, and protrusion showed the highest ranks weighted in the models. Orthodontic tooth extraction decision-making using AI presented promising accuracy but should be considered with caution due to the very low certainty of evidence. AI models for tooth extraction decision in orthodontics cannot yet be considered a substitute for a final human decision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.