Abstract
Atlantoaxial instability (AAI) in dogs refers to abnormal motion at the C1–C2 articulation due to congenital or developmental anomalies. Surgical treatment options for AAI include dorsal and ventral stabilization techniques. Ventral stabilization techniques commonly utilize transarticular and vertebral body screws or pins. However, accurate screw insertion into the vertebrae of C1 and C2 is difficult because of the narrow safety corridors. This study included 10 mixed dogs, 1 Pomeranian, and 1 Shih-Tzu cadaver. All dogs weighed <10 kg. Each specimen was scanned using computed tomography (CT) from the head to the 7th cervical vertebrae. This study used 12 bone models and 6 patient-specific drill guides. Bone models were made using CT images and drill guides were created through a CAD (computer-aided design) program. A total of six cortical screws were used for each specimen. Two screws were placed at each of the C1, C2 cranial, and C2 caudal positions. Postoperative CT images of the cervical region were obtained. The degree of cortex breaching and angle and bicortical status of each screw was evaluated. The number of screws that did not penetrate the vertebral canal was higher in the guided group (33/36, 92%) than in the control group (20/36, 56%) (P = 0.003). The screw angles were more similar to the reference angle compared to the control group. The number of bicortically applied screws in the control group was 28/36 (78%) compared to 34/36 (94%) in the guided group. Differences between the preoperative plan and the length of the applied screw at the C1 and C2 caudal positions were determined by comparing the screw lengths in the guide group. The study results demonstrated that the use of a patient-specific 3D-printed drill guide for AAI ventral stabilization can improve the accuracy of the surgery. The use of rehearsal using bone models and a drilling guide may improve screw insertion accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.