Abstract

BackgroundAseptic loosening of the tibial component remains a major cause of failure in unicompartmental knee arthroplasty (UKA) and may be related to micro-motion at the cement-bone interface due to insufficient cement penetration depth. Cement penetration is therefore taken as an indicator of solid fixation strength and primary stability. However, its non-invasive clinical assessment remains difficult in vivo as conventional x-ray is prone to distortion and CT-scans (computed tomography) are difficult to assess due to metal artifacts. The purpose of this study was to develop and validate a reliable in vivo measuring technique of cement penetration depth in human tibial UKA.MethodsIn an experimental setting, twelve UKA were implanted in fresh-frozen human cadaver knees using a minimal-invasive medial approach. Cement penetration depth was then measured via 1) virtual 3D-models based on metal artifact reduced CT-scans and 2) histological evaluation of nine serial cross-section cuts through the implant-cement-bone-interface. Subsequently, a concordance analysis between the two measuring techniques was conducted.ResultsThe average cement penetration depth was 1) 2.20 mm (SD 0.30 mm) measured on metal artifact reduced CT-scans and 2) 2.21 mm (SD = 0.42) measured on serial cuts (p = 0.956). The mean difference between both techniques was 0.01 mm (SD 0.31 mm) and the Person correlation coefficient was r = 0.686 (p = 0.014). All differences were within the upper and lower limit of agreement. There was no evidence of any significant proportional bias between both techniques (p = 0.182).ConclusionsCT-based non-invasive measurement of cement penetration depth delivers reliable results in measuring the penetration depth in tibial UKA. Thereby, it enables clinicians and researchers to assess the cement penetration for in vivo diagnostics in the clinical setting as well as in vitro biomechanical research with subsequent application of load to failure on the implant-cement-bone-interface.

Highlights

  • Aseptic loosening of the tibial component remains a major cause of failure in unicompartmental knee arthroplasty (UKA) and may be related to micro-motion at the cement-bone interface due to insufficient cement penetration depth

  • The minimal average squared difference between both measuring techniques was found at a threshold between trabecular bone and cement of 550 Hounsfield unit (HU) (Fig. 6)

  • The average cement penetration measured based on metal artifact reduced Computed tomography (CT)-scans was 2.20 mm (SD = 0.30) while the respective value based on the histological evaluation of the serial cuts was 2.21 mm (SD = 0.42), showing no significant difference between both measuring techniques (p = 0.956)

Read more

Summary

Introduction

Aseptic loosening of the tibial component remains a major cause of failure in unicompartmental knee arthroplasty (UKA) and may be related to micro-motion at the cement-bone interface due to insufficient cement penetration depth. Its non-invasive clinical assessment remains difficult in vivo as conventional x-ray is prone to distortion and CT-scans (computed tomography) are difficult to assess due to metal artifacts. The purpose of this study was to develop and validate a reliable in vivo measuring technique of cement penetration depth in human tibial UKA. Clinical assessment of the cement thickness and penetration underneath the implants remains challenging as conventional x-ray is prone to distortion and CT-scans are difficult to assess due to metal artifacts. The objective of this study was to develop and validate a reliable in vivo measuring technique of cement penetration underneath tibial UKA in human tibiae

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.