Abstract
To investigate the accuracy of the measurements provided by a new optical biometer (OA-2000, Tomey Corporation, Nagoya, Japan) for calculating the intraocular lens (IOL) power and to compare the refractive outcomes to those obtained with the IOLMaster 500 (Carl Zeiss Meditec, Jena, Germany). In this interventional multicenter study, consecutive patients having cataract surgery were enrolled. Only the IOL model used in the largest sample of patients was selected and the eyes implanted with that IOL were subsequently analyzed. The OA-2000, an optical biometer based on swept-source optical coherence tomography (SS-OCT), was used to measure axial length and corneal power in all eyes. IOL power was calculated with the Hoffer Q, Holladay 1, and SRK/T formulas. In a subsample of eyes, the IOL power was also calculated with measurements obtained by partial coherence interferometry (IOLMaster 500). The median absolute error and percentage of eyes with a prediction error of ±0.50 diopters (D) or less were calculated. Two hundred forty-nine eyes were analyzed. Using SS-OCT, the median absolute error ranged between 0.33 (Holladay 1) and 0.35 (SRK/T) D. The rate of eyes with a prediction error of ±0.50 D or less ranged between 71.5% (Hoffer Q) and 67.1% (SRK/T). In the subsample of 87 eyes with measurements by both devices, the median absolute error was lower with the OA-2000 (Hoffer Q: P = .0377; Holladay 1: P = .0191; SRK/T: P = .0087). The SS-OCT-based optical biometer investigated in the current study provides accurate measurements for IOL power calculation and seems to offer more predictable refractive results compared to the partial coherence interferometry IOLMaster. [J Refract Surg. 2017;33(10):690-695.].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of refractive surgery (Thorofare, N.J. : 1995)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.