Abstract
Our objectives were to evaluate and compare the digital dental models generated from 2 commercial intraoral scanners with manual measurements when performing 3-dimensional surface measurements along a curved line (curvilinear). Dry mandibles (n=61) with intact dentition were used. The mandibles were digitized using 2 chair-side intraoral scanners: Cadent iTero (Align Technology, San Jose, Calif) and Lythos Digital Impression system (Ormco, Orange, Calif). Digitized 3-dimensional models were converted to individual stereolithography files and used with commercial software to obtain the curvilinear measurements. Manual measurements were carried out directly on the mandibular teeth. Measurements were made on different locations on the dental arch in various directions. One-sample t tests and linear regression analyses were performed. To further graphically examine the accuracy between the different methods, Bland-Altman plots were computed. The level of significance was set at P<0.05. There were no significant differences between any of the paired methods; this indicated a certain level of agreement between the methods tested (P>0.05). Bland-Altman analysis showed no fixed bias of 1 approach vs the other, and random errors were detected in all comparisons. Although the mean biases of the digital models obtained by the iTero and Lythos scanners, when compared with direct caliper measurements, were low, the comparison of the 2 intraoral scanners yielded the lowest mean bias. No comparison displayed statistical significance for the t scores; this indicated the absence of proportional bias in these comparisons. The intraoral scanners tested in this study produced digital dental models that were comparatively accurate when performing direct surface measurements along a curved line in 3 dimensions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Orthodontics and Dentofacial Orthopedics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.