Abstract

We demonstrate that multiple spectral-shearing interferometry increases the precision and accuracy of measurements of the spectral phase of a complex pulse (time-bandwidth product = 125) arising from self-phase modulation in a gas filled capillary. We verify that the measured interferometric phase is accurate to 0.1 rad across the full bandwidth by checking the consistency between the spectral phases of each individual shear measurement. The accuracy of extracting pulse parameters (group delay dispersion, pulse duration and peak intensity) for single shear measurements were verified to better than 10% by comparison with the multishear reconstruction. High order space-time coupling is quantified across a single transverse dimension, verifying the suitability of such pulses for use in strong field experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.