Abstract

Multiple camera systems are widely used for 3D-motion analysis. Due to increasing accuracies these camera systems gained interest in biomechanical research areas, where high precision measurements are desirable. In the current study different measurement systems were compared regarding their measurement accuracy. Translational and rotational accuracy measurements as well as the zero offset measurements of seven different measurement systems were performed using two reference devices and two different evaluation algorithms. All measurements were performed in the same room with constant temperature at the same laboratory. Equal positions were measured with the systems according to a standardized protocol. Measurement errors were determined and compared. The highest measurement errors were seen for a measurement system using active ultrasonic markers, followed by another active marker measurement system (infrared) having measurement errors up to several hundred micrometers. The highest accuracies were achieved by three stereo camera systems, using passive 2D marker points having errors typically below 20 μm. This study can help to better assess the results obtained with different measurement systems. With the focus on the measurement accuracy, only one aspect in the selection of a system was considered. Depending on the requirements of the user, other factors like measurement frequency, the maximum analyzable volume, the marker type or the costs are important factors as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call