Abstract

The accuracy of a six degree of freedom (6DoF) couch was evaluated using a novel method. Cone beam CT (CBCT) images of a 3D phantom (IsoCal) were acquired with different, known combinations of couch pitch and roll angles. Pitch and roll angles between the maximum allowable values of 357 and 3 degrees were tested in one degree increments. A total of 49 combinations were tested at 0 degrees of yaw (couch rotation angle). The 3D positions of 16 tungsten carbide ball bearings (BBs), each 4mm in diameter and arranged in a known geometry within the IsoCal phantom, were determined in the 49 image sets with in-house software. The BB positions at different rotation angles were determined using a rotation matrix from the original BB positions at zero pitch and roll angles. A linear least squares fit method estimated the rotation angles and differences between detected and nominal rotation angles were calculated. This study was conducted for the case with and without extra weight on the couch. Couch walk shifts for the system were investigated using eight combinations of rotation, roll and pitch. A total of 49 CBCT images with voxel sizes 0.5×0.5×1.0mm3 were taken for the case without extra weight on the couch. The 16 BBs were determined to evaluate the isocenter translation and rotation differences between the calculated and nominal couch values. Among all 49 calculations, the maximum rotation angle differences were 0.10 degrees for pitch, 0.15 degrees for roll and 0.09 degrees for yaw. The corresponding mean and standard deviation values were 0.028±0.032, -0.043±0.058, and -0.009±0.033 degrees. The maximum translation differences were 0.3mm in the left-right direction, 0.5mm in the anterior-posterior direction and 0.4mm in the superior-inferior direction. The mean values and corresponding standard deviations were 0.07±0.12, -0.05±0.25, and -0.12±0.14mm for the planes described above. With an 80kg phantom on the couch, the maximum translation shift was 0.69mm. The couch walk translation shifts were less than 0.1mm and rotation shifts were less than 0.1 degree. Errors of a new 6DoF couch were tested using CBCT images of a 3D phantom. The rotation errors were less than 0.3 degree and the translation errors were less than or equal to 0.8mm in each direction. This level of accuracy is warranted for clinical radiotherapy utilization including stereotactic radiosurgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call