Abstract
Mean-field approximations (MFAs) are frequently used in physics. When a process (such as an epidemic or a synchronization) on a network is approximated by MFA, a major hurdle is the determination of those graphs for which MFA is reasonably accurate. Here, we present an accuracy criterion for Markovian susceptible-infected-susceptible (SIS) epidemics on any network, based on the spectrum of the adjacency and SIS covariance matrix. We evaluate the MFA criterion for the complete and star graphs analytically, and numerically for connected Erdős-Rényi random graphs for small size N≤14. The accuracy of MFA increases with average degree and with N. Precise simulations (up to network sizes N=100) of the MFA accuracy criterion versus N for the complete graph, star, square lattice, and path graphs lead us to conjecture that the worst MFA accuracy decreases, for large N, proportionally to the inverse of the spectral radius of the adjacency matrix of the graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.