Abstract

Medical imaging and its application in interventional guidance has revolutionized the development of minimally invasive surgical procedures leading to reduced patient trauma, fewer risks, and shorter recovery times. However, a frequently posed question with regard to an image guidance system is "how accurate is it?" On one hand, the accuracy challenge can be posed in terms of the tolerable clinical error associated with the procedure; on the other hand, accuracy is bound by the limitations of the system's components, including modeling, patient registration, and surgical instrument tracking, all of which ultimately impact the overall targeting capabilities of the system. While these processes are not unique to any interventional specialty, this paper discusses them in the context of two different cardiac image guidance platforms: a model-enhanced ultrasound platform for intracardiac interventions and a prototype system for advanced visualization in image-guided cardiac ablation therapy. Pre-operative modeling techniques involving manual, semi-automatic and registration-based segmentation are discussed. The performance and limitations of clinically feasible approaches for patient registration evaluated both in the laboratory and in the operating room are presented. Our experience with two different magnetic tracking systems for instrument and ultrasound transducer localization is reported. Ultimately, the overall accuracy of the systems is discussed based on both in vitro and preliminary in vivo experience. While clinical accuracy is specific to a particular patient and procedure and vastly dependent on the surgeon's experience, the system's engineering limitations are critical to determine whether the clinical requirements can be met.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.