Abstract
The ability to detect airborne alpha particles in real time could greatly enhance the safety of workers in radioactive environments. To assist in the development of an air-borne detection system, this study sought to overcome the difficulties in spectral analysis caused by the strong interaction of alpha particles with matter. Three modified Gaussian fitting functions were applied to a radon progeny alpha spectrum and cross-referenced to counteract the overlap phenomenon produced by low-tailing of the alpha peak. The radon progeny alpha spectrum was derived using MCNP6 and a PIPS (passivated implanted planar silicon) detector. The radionuclides were determined pertaining to two cases, where case 1 included 220Rn, 216Po, and 212Bi, and case 2 included 222Rn and 218Po. The RMS (root mean square) and reduced chi-square values were compared for accuracy. The convolution of an exponential low-energy tail with a Gaussian distribution equation provided 6.68% lower relative error than when two Gaussian distribution functions were combined according to centroid conditions. The relative error was 0.84% lower than with a Gauss function, indicating a spectrum-peak Gaussian distribution. By constructing the algorithm using this equation, it was possible to obtain high-accuracy analysis data even with low-resolution spectrums in the air.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.