Abstract
Since the terrain of Korea is complex, micro- as well as meso-climate variability is extreme by locations in Korea. In particular, air temperature of agricultural fields is influenced by topographic features of the surroundings making accurate interpolation of regional meteorological data from point-measured data. This study was carried out to compare spatial interpolation methods to estimate air temperature in agricultural fields surrounded by rugged terrains in South Korea. Four spatial interpolation methods including Inverse Distance Weighting (IDW), Spline, Ordinary Kriging (with the temperature lapse rate) and Cokriging were tested to estimate monthly air temperature of unobserved stations. Monthly measured data sets (minimum and maximum air temperature) from 588 automatic weather system(AWS) locations in South Korea were used to generate the gridded air temperature surface. As the result, temperature lapse rate improved accuracy of all of interpolation methods, especially, spline showed the lowest RMSE of spatial interpolation methods in both maximum and minimum air temperature estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.