Abstract
Fingerprint-based indoor localization has attracted extensive research efforts due to its potential for deployment without extensive infrastructure support. However, the accuracies of these different systems vary and it is difficult to compare and evaluate these systems systematically. In this work, we propose a Gaussian process based approach that takes the radio map and the localization algorithm as an input, and outputs the expected accuracy of the localization system. With an efficient error estimation algorithm, many applications such as landmark detection, localization algorithm selection and access point subset selection can be performed. Our evaluations show that our approach provides sufficient accuracy and can serve as a useful tool for system evaluation and performance tuning when developing fingerprint-based indoor localization systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.