Abstract

Abstract The first-ever accuracy assessment of a computational model for Non-Ideal Compressible-Fluid Dynamics (NICFD) flows is presented. The assessment relies on a comparison between numerical predictions, from the open-source suite SU2, and pressure and Mach number measurements of compressible fluid flows in the non-ideal regime. Namely, measurements regard supersonic flows of siloxane MDM (Octamethyltrisiloxane, C 8 H24O 2 Si 3 ) vapor expanding along isentropes in the close proximity of the liquid–vapor saturation curve. The model accuracy assessment takes advantage of an Uncertainty Quantification (UQ) analysis, to compute the variability of the numerical solution with respect the uncertainties affecting the test-rig operating conditions. This allows for an uncertainty-based assessment of the accuracy of numerical predictions. The test set is representative of typical operating conditions of Organic Rankine Cycle systems and it includes compressible flows expanding through a converging–diverging nozzle in mildly-to-highly non-ideal conditions. All the considered flows are well represented by the computational model. Therefore, the reliability of the numerical implementation and the predictiveness of the NICFD model are confirmed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.