Abstract

Accurate electrostatic maps of proteins are of great importance in research of protein interaction with ligands, solvent media, drugs, and other biomolecules. The large size of real-life proteins imposes severe limitations on computational methods one can use for obtaining the electrostatic map. Well-known accurate second-order Moller–Plesset and density functional theory methods are not routinely applicable to systems larger than several hundred atoms. Conventional semiempirical tools, as less resource demanding ones, could be an attractive solution but they do not yield sufficiently accurate calculation results with reference to protein systems, as our analysis demonstrates. The present work performs a thorough analysis of the accuracy issues of the modified neglect of differential overlap type semiempirical Hamiltonians AM1 and PM3 on example of the calculation of the molecular electrostatic potential and the dipole moment of natural amino acids. Real capabilities and limitations of these methods with application to protein modeling are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.