Abstract

Digital Elevation Model is a three-dimensional representation of the earth's surface, which is essential for Geoscience and hydrological implementations. DEM can be created utilizing Photogrammetry techniques, radar interferometry, laser scanning and land surveying. There are some world agencies provide open source digital elevation models which are freely available for all users, such as the National Aeronautics and Space Administration (NASA), Japan Aerospace Exploration Agency’s (JAXA) and others. ALOS, SRTM and ASTER are satellite based DEMs which are open source products. The technologies that are used for obtaining raw data and the methods used for its processing and on the other hand the characteristics of natural land and land cover type, these and other factors are the cause of implied errors produced in the digital elevation model which can't be avoided. In this paper, ground control points observed by the differential global positioning system DGPS were used to compare the validation and performance of different satellite based digital elevation models. For validation, standard statistical tests were applied such as Mean Error (ME) and Root Mean Square Error (RMSE) which showed ALOS DEM had ME and RMSE are -1.262m and 1.988m, while SRTM DEM had ME of -0.782m with RMSE of 2.276m and ASTER DEM had 4.437m and 6.241m, respectively. These outcomes can be very helpful for analysts utilizing such models in different areas of work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.