Abstract

Modern devices that support augmented reality technology are widely used in various fields of human activity, including medicine. Head mounted displays may provide an attractive alternative to traditional surgery navigation systems because allow users to stand at the first point of view and interact with objects in their surroundings naturally. Thus, the object of research in this study is recognition accuracy of fiducial markers in zones where ultra-wide angle camera distort the most. This is motivated by the need to increase user workspace for interaction with markers compare to the workspace provided with such popular augmented reality device as Microsoft HoloLens 2. In this study, the recognition accuracy is evaluated using ArUco square markers with taking into account different marker sizes and their positions in the camera view space. The marker positions include the center of the camera view space as well as such zones where lenses distort the most as top left, top right, bottom left, and bottom right corners. Obtained results show that recognition accuracy is good enough to be applicable for surgical navigation and failures referred to the distortion occurs are available in less than 0.2 % of all cases. This gives a possibility to increase workspace for interaction with markers compare to the Microsoft HoloLens 2. At the same time, the workspace for interaction could not reach the actual view space of the camera since recognition fails in cases where marker’s body is partially visible in the captured image (i. e., marker position is at the image boundaries).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call