Abstract

High-speed CMOS camera is a new kind of transducer to make the videogrammetric measurement for monitoring the displacement of high-speed shaking table structure. The purpose of this paper is to validate the three-dimensional coordinate accuracy of the shaking table structure acquired from the presented high-speed videogrammetric measuring system. In the paper, all of the key intermediate links are discussed, including the high-speed CMOS videogrammetric measurement system, the layout of the control network, the elliptical target detection, and the accuracy validation of final 3D spatial results. Through the accuracy analysis, the submillimeter accuracy can be made for the final the three-dimensional spatial coordinates which certify that the proposed high-speed videogrammetric technique is a better alternative technique which can replace the traditional transducer technique for monitoring the dynamic response for the shaking table structure.

Highlights

  • In the field of civil engineer, under the simulation environment, the dynamic response of many structures needs to be tested to further verify the seismic performance to reduce disaster losses and maintain social stability before their application in practice, and one of the most frequently used experimental platforms is earthquake shaking table which is a device for shaking structural models or building components with a simulated seismic wave [1]

  • Videogrammetry is a direct extension of photogrammetry, which can calculate three-dimensional coordinates of an object as a function of time from the simultaneously triggered images sequences and further perform three-dimensional shape reconstruction and analyze the dynamic response of the shaking table structure [7]

  • With the rapid development of the sensor technology, especially the technique of Complementary Metal-Oxide-Semiconductor (CMOS) which is a technology for constructing integrated circuits, the frame frequency of some high-speed CMOS cameras can achieve 1000 fps with the maximum resolution of 1280 (H) by 1024 (V) pixels

Read more

Summary

Introduction

In the field of civil engineer, under the simulation environment, the dynamic response of many structures needs to be tested to further verify the seismic performance to reduce disaster losses and maintain social stability before their application in practice, and one of the most frequently used experimental platforms is earthquake shaking table which is a device for shaking structural models or building components with a simulated seismic wave [1]. The objective of this paper is to study each key step of high-speed videogrammetric measurement for shaking table structure to validate the accuracy of the 3D spatial coordinates of the tracking target attached on the surface of the shaking table structure.

Videogrammetric Measurement System
Accuracy Analysis
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call