Abstract

For the simulation of multiphase flows, an incompressible finite volume particle (IFVP) method is proposed that offers enhanced accuracy and stability. A high-order multiphase Laplacian operator is derived by combining the gradient model and divergence model. To produce enhanced accuracy, neighboring dummy particle is introduced in each dimension of the calculation and used for the discretization of the gradient model. The error-compensating terms produced by introducing these dummy particles assist in the higher-order calculations of the gradient operator. Consequently, accuracy of the Laplacian operator is enhanced consistently by these error-compensating terms. Compared to the single dummy particle introduced for two-dimensional calculations in our previous work (Liu et al., 0000), the proposed high-order scheme is more generalized and can be applied in the calculation of arbitrary dimensions. This enhanced multiphase scheme provides accurate and stable calculations of multiphase flows characterized by high density ratios. An advantage of this scheme is that the separation of two liquids of similar density is easily handled as well. Results of several numerical simulations are given to demonstrate its validity and enhanced performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.