Abstract

The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate (< 0.2°) and quasi-static testing (< 6°). Both systems showed a good intraclass coefficient of reliability (ICCs > 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system.

Highlights

  • Injuries to the hand and wrist are common in boxing, accounting for 16–35% of all injuries in training and competition [1, 2], with the highest rate observed in competition (347 injuries per 1000 h) versus training (< 0.5 injuries per 1000 h) [1]

  • Jab and hook shots for wrist motions occurring during the punch testing in flexion–extension yielded good reliability (ICCs > 0.8) [39], whilst a substantial reliability (ICCs > 0.6) [39] for both types of shots for wrist motions was recorded in ulnar-radial deviations (Table 3)

  • For the quasi-static measurement of boxer’s wrists, the electromagnetic tracking system agreed with the videobased system within 2°–6° for all four movements tested, with the largest difference of 5.7° similar to reported maximum differences of 5° observed in other clinical studies [40, 41]

Read more

Summary

Introduction

Injuries to the hand and wrist are common in boxing, accounting for 16–35% of all injuries in training and competition [1, 2], with the highest rate observed in competition (347 injuries per 1000 h) versus training (< 0.5 injuries per 1000 h) [1]. Studies investigating the kinematics of boxing have provided information on the range of motion occurring at the shoulder and elbow joints, but not the wrist [4, 5]. These studies used reflective surface markers, placed directly on the skin, and camera-based motion capture system with the results interpreted using Cardan angles, an approach that has been widely described in the literature [6,7,8,9,10]. Reflective surface markers have been used to measure wrist kinematics during the activities of daily living [11,12,13]. Placing markers on the glove would not be practicable, as its movement can differ from that of the underlying wrist joint

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call