Abstract

Assessments of human movement are clinically important. However, accurate measurements are often unavailable due to the need for expensive equipment or intensive processing. For orthotists and therapists, shank-to-vertical angle is one critical measure used to assess gait and guide prescriptions. Smartphone-based sensors may provide a widely available platform to expand access to this measurement. Assess accuracy and repeatability of smartphone-based measurement of shank-to-vertical angle compared to marker-based 3D motion analysis. Repeated-measures. Four licensed clinicians (two physical therapists and two orthotists) measured shank-to-vertical angle during gait with a smartphone attached to the anterior or lateral shank surface of unimpaired adults. We compared the shank-to-vertical angle calculated from the smartphone's inertial measurement unit to marker-based measurements. Each clinician completed three sessions/day on two days with each participant to assess repeatability. Average absolute differences in shank-to-vertical angle measured with a smartphone versus marker-based 3D motion analysis during gait were 0.67 ± 0.25° and 4.89 ± 0.72°, with anterior or lateral smartphone positions, respectively. The inter- and intra-day repeatability of shank-to-vertical angle were within 2° for both smartphone positions. Smartphone sensors can be used to measure shank-to-vertical angle with high accuracy and repeatability during unimpaired gait, providing a widely available tool for quantitative gait assessments. Smartphone sensors demonstrated high accuracy and repeatability for monitoring shank-to-vertical angle during gait. Measurement of shank-to-vertical angle from the front of the shank was more accurate than the side of the shank. Smartphones may expand access to quantitative assessments of gait.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call