Abstract
ABSTRACT Quantum machine learning (QML) focuses on machine learning models developed explicitly for quantum computers. Availability of the first quantum processor led to further research, particularly exploring possible practical applications of QML algorithms in the remote sensing field. The demand for extensive field data for remote sensing applications has started creating bottlenecks for classical machine learning algorithms. QML is becoming a potential solution to tackle big data problems as it can learn from fewer data. This paper presents a QML model based on a quantum support vector machine (QSVM) to classify Holm Oak trees using PRISMA hyperspectral Imagery. Implementation of quantum models was carried on a quantum simulator and a real-time superconducting quantum processor of IBM. The performance of the QML model is validated in terms of dataset size, overall accuracy, number of qubits, training and predicting speed. Results were indicative that (i) QSVM offered 5% higher accuracy than classical SVM (CSVM) with 50 samples and ≥12 qubits/feature dimensions whereas with 20 samples at 16 Qubits/feature dimension, (ii) training time for QSVM at maximum accuracy was 284 s with 50 samples and with 20 samples was 53.68 s and (iii) predicting time for 400 pixels using the QSVM model trained with 50 samples dataset was 5243 s whereas with 20 samples dataset was 2845 s. Results were indicative that QML offers better accuracy but lack training and predicting speed for hyperspectral data. Another observation is that predicting speed of QSVM depends on the number of samples used to train the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.