Abstract

PurposeTo investigate the sequence‐specific impact of B1+ amplitude mapping on the accuracy and precision of permittivity reconstruction at 3T in the pelvic region.Methods B1+ maps obtained with actual flip angle imaging (AFI), Bloch–Siegert (BS), and dual refocusing echo acquisition mode (DREAM) sequences, set to a clinically feasible scan time of 5 minutes, were compared in terms of accuracy and precision with electromagnetic and Bloch simulations and MR measurements. Permittivity maps were reconstructed based on these B1+ maps with Helmholtz‐based electrical properties tomography. Accuracy and precision in permittivity were assessed. A 2‐compartment phantom with properties and size similar to the human pelvis was used for both simulations and measurements. Measurements were also performed on a female volunteer’s pelvis.ResultsAccuracy was evaluated with noiseless simulations on the phantom. The maximum B1+ bias relative to the true B1+ distribution was 1% for AFI and BS and 6% to 15% for DREAM. This caused an average permittivity bias relative to the true permittivity of 7% to 20% for AFI and BS and 12% to 35% for DREAM. Precision was assessed in MR experiments. The lowest standard deviation in permittivity, found in the phantom for BS, measured 22.4 relative units and corresponded to a standard deviation in B1+ of 0.2% of the B1+ average value. As regards B1+ precision, in vivo and phantom measurements were comparable.ConclusionsOur simulation framework quantitatively predicts the different impact of B1+ mapping techniques on permittivity reconstruction and shows high sensitivity of permittivity reconstructions to sequence‐specific bias and noise perturbation in the B1+ map. These findings are supported by the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.