Abstract

The multi-core revolution and the biological data flood that is generated by novel wet-lab techniques pose new technical challenges for large-scale inference of phylogenetic trees from molecular sequence data.We present the first assessment of accuracy and performance tradeoffs between single and double precision arithmetics and the first SSE3 vectorization for computing the Phylogenetic Likelihood Kernel (PLK) which forms part of many state-of-the art tools for phylogeny reconstruction and consumes 90-95% of the overall execution time of these tools. Moreover, the PLK also dominates memory consumption, which means that deploying single precision is desirable to accommodate increasing memory requirements and to devise efficient mappings to GPUs. We find that the accuracy provided by single precision is sufficient for conducting tree searches, but that the increased amount of scaling operations to prevent numerical underflow, even when using SSE3 operations that accelerate the single precision PLK by 60%, generates run-time penalties compared to double precision on medium-sized datasets. However, on large datasets, single precision can yield significant execution time savings of 40% because of increased cache efficiency and also reduces memory footprints by 50%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.