Abstract
Diameter growth (DG) equations in many existing forest growth and yield models use tree crown ratio (CR) as a predictor variable. Where CR is not measured, it is estimated from other measured variables. We evaluated CR estimation accuracy for the models in two Forest Vegetation Simulator variants: the exponential and the logistic CR models used in the North Idaho (NI) variant, and the Weibull model used in the South Central Oregon and Northeast California (SO) variant. We also assessed the effects of using measured (CRm) versus predicted (CRp) crown ratio for predicting 10 year DG and 30 year basal area increment (BAI). Evaluation criteria included equivalence tests, bias, root mean square error, and Spearman’s coefficient of rank correlation. Inventory data from the Winema and the Colville National Forests were used. Results showed that the NI variant models overpredicted CR when CRm was below 40% and underpredicted CR when it was above 60%, whereas the SO variant model overpredicted CR when CRm was smaller than 60%. Differences between CRm and CRp were positively correlated with differences in DG predictions. Using CRm versus CRp resulted in 30 year BAI absolute percent differences of 10% or less for more than 50% of the plots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.