Abstract

Recent results from Preuss et al. (J Comput Chem 2004, 25, 112) on DNA base molecules, obtained by plane wave density functional calculations using ultrasoft pseudopotentials, are compared with calculations using Gaussian basis sets. Bond lengths and angles agree closely, but dihedral angles and vibrational frequencies show significant differences. The Gaussian basis calculations are at least an order of magnitude more efficient than the plane wave/ultrasoft pseudopotential calculations at a similar level of accuracy; the advantage is even larger if the Fourier Transform Coulomb method is used. To obtain definite benchmark values, the geometries of the four DNA bases were optimized at the MP2 level with large basis sets, up to cc-pVQZ and aug-cc-pVTZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.