Abstract

Abstract A fully implicit (FI) time integration method has been implemented into a spectral finite-element shallow-water equation model on a sphere, and it is compared to existing fully explicit leapfrog and semi-implicit methods for a suite of test cases. This experiment is designed to determine the time step sizes that minimize simulation time while maintaining sufficient accuracy for these problems. For test cases without an analytical solution from which to compare, it is demonstrated that time step sizes 30–60 times larger than the gravity wave stability limits and 6–20 times larger than the advective-scale stability limits are possible using the FI method without a loss in accuracy, depending on the problem being solved. For a steady-state test case, the FI method produces error within machine accuracy limits as with existing methods, but using an arbitrarily large time step size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.