Abstract

BackgroundGenomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles. Practically, to implement GS in cassava breeding, it is necessary to evaluate different GS models and to develop suitable models for an optimized breeding pipeline. In this paper, we compared (1) prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model for a single-environment genetic evaluation (Scenario 1), and (2) accuracies from a compound symmetric multi-environment model (uE) parameterized as a univariate multi-kernel model to a multivariate (ME) multi-environment mixed model that accounts for genotype-by-environment interaction for multi-environment genetic evaluation (Scenario 2). For these analyses, we used 16 years of public cassava breeding data for six target cassava traits and a fivefold cross-validation scheme with 10-repeat cycles to assess model prediction accuracies.ResultsIn Scenario 1, the MT models had higher prediction accuracies than the uT models for all traits and locations analyzed, which amounted to on average a 40% improved prediction accuracy. For Scenario 2, we observed that the ME model had on average (across all locations and traits) a 12% improved prediction accuracy compared to the uE model.ConclusionsWe recommend the use of multivariate mixed models (MT and ME) for cassava genetic evaluation. These models may be useful for other plant species.

Highlights

  • Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles

  • Six target agronomic traits were used in the analysis including seedling vigor (VIGOR), number of storage roots per plot at harvest (RTNO), fresh weight of harvested roots expressed in tons per hectare (T/ha) (FYLD), percent dry matter (DM) of storage roots, which measures root dry weight as the % of the root fresh weight, plot mean cassava mosaic disease severity (MCMDS), which is rated on a scale from 1 to 5, and plot mean cassava green mite (MCGM) severity, which is rated on a scale from 1 to 5

  • On average, the MT model yielded prediction accuracies that were 59% higher for VIGOR, 43% for RTNO, 27% for DM, 40% for MCMDS, 55% for FYLD and 18% for MCGM compared to the univariate single environment one-step (uT) model

Read more

Summary

Introduction

Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles. Genomic selection (GS) [10] offers crop species such as cassava a tremendous opportunity for accelerated genetic gains [11] by using whole-genome single nucleotide polymorphisms (SNPs) scored with methods such as genotyping-by-sequencing (GBS) [12]. These whole-genome SNPs could be sufficiently dense to be in linkage disequilibrium with most quantitative trait loci (QTL) that affect traits of interest. These SNPs will help to better track relatedness due to Mendelian sampling [13], which leads to improved selection accuracies especially when pedigree records are not available [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call