Abstract

This paper focuses on developing diagonal gradient‐type methods that employ accumulative approach in multistep diagonal updating to determine a better Hessian approximation in each step. The interpolating curve is used to derive a generalization of the weak secant equation, which will carry the information of the local Hessian. The new parameterization of the interpolating curve in variable space is obtained by utilizing accumulative approach via a norm weighting defined by two positive definite weighting matrices. We also note that the storage needed for all computation of the proposed method is just O(n). Numerical results show that the proposed algorithm is efficient and superior by comparison with some other gradient‐type methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.