Abstract

Beibu Gulf is a highly dynamic and complex coastal environment that is currently experiencing one of the largest rates of development and urbanization in west China. Little is known about the effects of this increased human activity on coastal sedimentation processes and on the rates of sediment accumulation and the variation of organic materials to the coast. In this study, four sediment cores were collected and applied the 210Pb dating method to reconstruct sedimentation rates and historical changes of materials to the northern Beibu Gulf over the past century. Depth profiles of excess 210Pb (210Pbex) showed highest activity values at the surface (28.4–104.0 Bq kg−1) followed by a linear or exponential decay with depth for all but one study site. 137Cs activity ranged between 0.236 and 2.034 Bq kg−1, and a distinct peak activity – representing the 1963 fallout maximum – was observed at all but one site. Sediment chronologies were determined using the Constant Rate of Supply (CRS) model. Calculated accumulation rates in the studied sites were the lowest in the late 1920s and early 1930s (mass accumulation rate (MAR): 0.06 ± 0.01 g cm−2 y−1; sediment accumulation rate (SAR): 0.08 ± 0.01 cm y−1) and increased gradually until reaching maximum values in the 2010s (MAR: 0.22 ± 0.09 g cm−2 y−1; SAR: 0.46 ± 0.32 cm y−1). Current accumulation rates are up to 800% higher than rates observed in the 1920s, with most of the increase happening after 1970, coinciding with the increasing rate of urbanization and development in the region. The highest increase in SAR over the last century (+877%) was observed in Sanniang Bay, with the lowest rate of increase (+283%) observed in Lianzhou Bay. TOC content in these sediments has also increased over the last 100 years. Current values (0.98–1.28%) are about 170% higher than historical concentrations (before 1970). The positive correlations between TOC and population density and GDP growth in major cities surrounding the gulf, provide further indication that human activities have significantly altered the sedimentary environment in recent decades along the northern Beibu Gulf coast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.