Abstract

This study compared the heavy metal concentration in water, sediment, and shrimp at different growth stages of culture and subsequently evaluated the ecotoxicological and human health risk status. Total trace element concentration in the water, sediment and shrimp ranged from not detected (ND) (Hg) to 91.05 (Fe) μg/L, 0.01 (Hg) to 19, 246.33 (Fe) mg/kg, and ND (Hg) to 13.98 (Fe) mg/kg, respectively. Toxic metals such as, Cd, Hg, and Pb in shrimps ranged from ND to 2.11 mg/kg, ND to 0.158 mg/kg, ND to 0.088 mg/kg, and ND to 0.469 mg/kg, respectively. Toxic heavy metals at all the growth stages of shrimps (days of culture (DOC)-01 to DOC-90) were found below the maximum residual limit (MRL) of 0.5 mg/kg set by the European Commission (EC). Similarly, Cu, Zn, and As concentrations in shrimp were also far below the MRLs of 30 mg/kg, 100 mg/kg, and 76 mg/kg set by the World Health Organization and Food Safety and Standard Authority of India, respectively. The concentration of heavy metals increased from DOC-01 to DOC-90 and was positively correlated with the length and weight of the shrimps (p < 0.05). The risk assessment was estimated for both Indians and Americans and found no carcinogenic (lifetime cancer risk (LCR) < 10−4) and non-carcinogenic (THQ and TTHQ<1) health risks through consumption of shrimp cultured in this region. The hazard quotient (HQdermal < 1), hazard index (HI < 1), and LCR (<10−4) values of the heavy metals indicated that the dermal absorption might not be a concern for the local fishermen and marine fish/shrimp farmworkers. Water and sediment quality indices were applied to assess the surface water and sediment quality, and their results were found nil to low levels of heavy metal contamination at all the sampling sites. All heavy metals studied in sediments were < effect range low (ERL) and < threshold effect level (TEL), indicating no adverse biological effects on aquatic organisms. Therefore, regular monitoring of the shrimp aquaculture system throughout the crop will provide evidence of heavy metals bioaccumulation in shrimps. This research will provide baseline data to help farmers establish the optimal aquaculture practices and regulatory authorities to formulate legislation and strategies to reduce heavy metal biomagnification in shrimps from farm to fork.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.