Abstract
ABSTRACT Weed residues can influence nutrient cycling in agroecosystems. Quantifying this potential nutrient source may influence weed control and fertilisation practices. Nicandra physalodes (L.) Gaertn. is a weed with a short life cycle and a great ability to accumulate dry matter. Field observations suggest that N. physaloides residues are easily decomposed in soil. The objective of this study was to evaluate the effect of increasing of N, P and K doses on the growth of N. physalodes, as well as the nutrient content, chemical characteristics and C/N ratio of the weed. A randomised block design, arranged in split-plot with three replications, was utilised. The main plots were given four doses of NPK (Dose 1 - 0, 0.3 and 17.2 mg dm-3; Dose 2 - 30, 450.3 and 75.4 mg dm-3; Dose 3 - 60, 900.3 and 133.4 mg dm-3; and Dose 4 - 120, 1800.3 and 249.68 mg dm-3), and the subplots were harvested at ten time points after emergence (26, 33, 40, 47, 54, 61, 76, 91, 106 and 121 days). Higher dry matter production and N, P and K content were observed in plants grown on higher levels of fertiliser. The increase of N, P and K levels in the soil resulted in greater total accumulation of these macronutrients. The highest macronutrient contents were K and N. The treatments did not affect neutral detergent fibre (NDF), acid detergent fibre (ADF) and C/N ratio of plant. N. physalodes had low C/N ratio, low NDF and ADF levels, and great nutrient accumulation, suggesting that this plant is quickly decomposed, providing a rapid cycling of nutrients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.