Abstract

The properties of soils derived from carbonate rock, red residua, and sand-shale in Guizhou province, China are essentially different. However, the effects of parent material and anthropogenic activities on the concentration of trace elements when the soils are converted into paddy soils are unknown. A total of 319 paddy topsoil samples (0–20 cm) were collected in a typical region to determine their relative contribution to the concentrations of trace elements in the soil. The results indicated that the contents of trace elements were far beyond the uncultivated soil background and the input of organic fertilizers was presumably responsible for accumulation of trace elements. In addition, principal component analysis showed that the first component included Cd, Cr, and As, which strongly associated with anthropogenic activities. Pb and Hg formed the second component, which related to both parent materials and anthropogenic input. Furthermore, the Cr and Hg contents in paddy soil derived from carbonate rock have higher values than other types of soils partly because of the high background values as well as slightly alkaline condition. In the paddy soil derived from red residua, high physical clay content accounted for enrichment of Pb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.