Abstract

The fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier coefficients with a substantial time saving over conventional methods. The finite word length used in the computer causes an error in computing the Fourier coefficients. This paper derives explicit expressions for the mean square error in the FFT when floating-point arithmetics are used. Upper and lower bounds for the total relative mean square error are given. The theoretical results are in good agreement with the actual error observed by taking the FFT of data sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.