Abstract

Nickel-resistant bacteria isolated from underneath Ni-hyperaccumulators growing on serpentine soils were screened for production of polyhydroxyalkanoates. These rhizobacteria accumulated poly-3-hydroxybutyric acid [P(3HB)] accounting 3.9–67.7% of cell dry weight during growth in gluconate and/or glucose. Cupriavidus pauculus KPS 201 utilized only gluconate and accumulated about 67.7% P(3HB) while, Bacillus firmus AND 408 utilized both carbon sources for polymer synthesis. The isolates being resistant to Ni also accumulated substantial amount of P(3HB) when grown in presence of the heavy metal and this was revealed by transmission electron microscopic studies. Although B. firmus AND 408 produced only P(3HB) at higher concentrations of gluconate, C. pauculus KPS 201 synthesized copolymer of 3-hydroxybutyric acid (3HB) and 3-hydroxyvaleric acid (3HV) [P(3HB-co-3HV)]. In presence of 0.8% gluconate and 4 mM Ni, KPS 201 cells produced PHA amounting 81% CDW, which contained 76 and 24 mol% 3HB and 3HV monomers, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call