Abstract

Few peribronchial mast cells are noted either in the lungs of naive mice or in the lungs of OVA-sensitized mice challenged acutely with OVA by inhalation. In this study, we demonstrate that OVA-sensitized mice exposed to repetitive OVA inhalation for 1-6 mo have a significant accumulation of peribronchial mast cells. This accumulation of peribronchial mast cells is associated with increased expression of the Th2 cell-derived mast cell growth factors, including IL-4 and IL-9, but not with the non-Th2 cell-derived mast cell growth factor, stem cell factor. Pretreating mice with immunostimulatory sequences (ISS) of DNA containing a CpG motif significantly inhibited the accumulation of peribronchial mast cells and the expression of IL-4 and IL-9. To determine whether mast cells express Toll-like receptor-9 (TLR-9; the receptor for ISS), TLR-9 expression by mouse bone marrow-derived mast cells (MBMMCs) was assessed by RT-PCR. MBMMCs strongly expressed TLR-9 and bound rhodamine-labeled ISS. However, incubation of MBMMCs with ISS in vitro neither inhibited MBMMC proliferation nor inhibited Ag/IgE-mediated MBMMC degranulation, but they did induce IL-6. Overall these studies demonstrate that mice exposed to repetitive OVA challenge, but not acute OVA challenge, have an accumulation of peribronchial mast cells and express increased levels of mast cell growth factors in the lung. Although mast cells express TLR-9, ISS does not directly inhibit mast cell proliferation in vitro, suggesting that ISS inhibits accumulation of peribronchial mast cells in vivo by indirect mechanism(s), which include inhibiting the lung expression of Th2 cell-derived mast cell growth factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.