Abstract

Adenosine to inosine (A-to-I) RNA editing is important for a functional brain, and most known sites that are subject to selective RNA editing have been found to result in diversified protein isoforms that are involved in neurotransmission. In the absence of the active editing enzymes ADAR1 or ADAR2 (also known as ADAR and ADARB1, respectively), mice fail to survive until adulthood. Nuclear A-to-I editing of neuronal transcripts is regulated during brain development, with low levels of editing in the embryo and a dramatic increase after birth. Yet, little is known about the mechanisms that regulate editing during development. Here, we demonstrate lower levels of ADAR2 in the nucleus of immature neurons than in mature neurons. We show that importin-α4 (encoded by Kpna3), which increases during neuronal maturation, interacts with ADAR2 and contributes to the editing efficiency by bringing it into the nucleus. Moreover, we detect an increased number of interactions between ADAR2 and the nuclear isomerase Pin1 as neurons mature, which contribute to ADAR2 protein stability. Together, these findings explain how the nuclear editing of substrates that are important for neuronal function can increase as the brain develops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.