Abstract
The state of the DNA from cerebellar neurons of male Sprague-Dawley rats after whole-brain irradiation with 2000 rad of X rays was determined at various times by obtaining DNA sedimentation profiles using alkaline sucrose gradients in slow reorienting zonal rotors. It took more than 4 weeks after irradiation for the neuronal DNA distributions to return to those obtained from the unirradiated controls. At 7 weeks, the DNA from irradiated neurons sedimented more rapidly than that from unirradiated neurons. Accumulation of the neuronal DNA damage (degradation?) which led to slower sedimenting DNA species began by Week 10 and continued until the majority of the irradiated rats began to die at Week 20. We propose as a working hypothesis that the accumulation of neuronal DNA damage initially observed 10 weeks after 2000 rad of whole-brain irradiation may reflect or cause changes in the central nervous system that later result in the death of the animal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.