Abstract

Hyaluronic acid (HA) has a pivotal role in bone and cartilage metabolism. In this study, we investigated the effect and underlying mechanisms of HA accumulation on the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) induced by 1α,25(OH)2D3 and dexamethasone in stromal cells, which support osteoclastogenesis. Degradation of HA by hyaluronidase (HA'ase) treatment enhanced the expression of RANKL in ST2 cells stimulated with 1α,25(OH)2D3 and dexamethasone. Down-regulation of hyaluronan synthase 2 (HAS2) expression by siRNA also stimulated RANKL expression induced by 1α,25(OH)2D3 and dexamethasone. Results from a cell co-culture system with bone marrow cell showed that 1α,25(OH)2D3 and dexamethasone-induced RANKL expression in HA'ase treated- and HAS2 siRNA transfected-ST2 cells was down-regulated by treatment of cells with high molecular weight HA. In contrast, transforming growth factor-β1 (TGF-β1), which stimulates HAS2 expression and HA synthesis, down-regulated RANKL expression induced by 1α,25(OH)2D3 and dexamethasone. Interestingly, knockdown of has2 gene enhanced the expression of vitamin D receptor (VDR) and phosphorylation of signal transducers and activator of transcription 3 (STAT3) in ST2 cells stimulated by 1α,25(OH)2D3 and dexamethasone. These results indicate that accumulation of HA in bone marrow cells may affect RANKL-mediated osteoclast-supporting activity via regulation of VDR and STAT3 signaling pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.