Abstract

The use of sewage sludge as a source of nutrients in crop production is increasing in the United States and worldwide. A field study was conducted on a 10% slope at Kentucky State University Research Farm. Eighteen plots of 22 × 3.7 m each were separated using metal borders and the soil in six plots was mixed with sewage sludge, six plots were mixed with yard waste compost, and six unamended plots were used for comparison purposes. During a subsequent 3-year study, plots were planted with potato (year 1), pepper (year 2), and broccoli (year 3). The objectives of this investigation were to: (i) characterize chemical properties of soil-incorporated sewage sludge and yard waste compost; (ii) determine the concentration of seven heavy metals (Cd, Cr, Ni, Pb, Zn, Cu, and Mo) in sewage sludge and yard waste compost used for land farming; and (iii) monitor heavy metal concentrations in edible portions of plants at harvest. Concentrations of heavy metals in sewage sludge were below the U.S. EPA limits. Analysis of potato tubers, peppers, and broccoli grown in sludge-amended soil showed that Cd, Cr, Ni, and Pb were not significantly different from control plants. Concentrations of Zn, Cu, and Mo were significantly greater in tubers and peppers grown in sludge compared to their respective controls. Zn and Mo in broccoli heads were higher than their control plants. The ability of potato to accumulate lead needs additional investigation to optimize the phytoremediation of this pollutant element.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.