Abstract

Psoriasis is a common chronic T-cell-mediated autoimmune skin disease, and traditional immunotherapies for psoriasis have focused on the direct inhibition of T cells, which often causes toxicity and lacks long-term effectiveness. Safe and effective therapeutic strategies are strongly needed for psoriasis. In this study, we show for the first time a significant accumulation of FLT3(+) CD11c(+) dendritic cells (DCs) in human psoriatic lesions and in the skin of experimental preclinical K14-VEGF transgenic homozygous mice, our animal model, although not an exact match for human psoriasis, displays many characteristics of inflammatory skin inflammation. SKLB4771, a potent and selective FLT3 inhibitor that we designed and synthesised, was used to treat cutaneous inflammation and psoriasis-like symptoms of disease in mice and almost completely cured the psoriasis-like disease without obvious toxicity. Mechanistic studies indicated that SKLB4771 treatment significantly decreased the number and activation of pDCs and mDCs in vitro and in vivo, and subsequent T-cell cascade reactions mediated by Th1/Th17 pathways. These findings show that targeted inhibition of FLT3, and hence direct interference with DCs, may be a novel therapeutic approach for the treatment of psoriasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call