Abstract
Alzheimer's disease (AD) is the most commonly form of dementia in the elderly. The development of molecules able to detect biomarkers characteristic of AD is critical to its understanding and treatment. However, such molecules must be able to pass blood-brain barrier (BBB) which is a major impediment to the entry of many therapeutic drugs into the brain. Such a limitation applies to the development of magnetic resonance imaging molecular neuroimaging agents using biomarkers of AD-like beta-amyloid deposits, as the common extracellular contrast agents (CAs) are not able to cross an intact BBB. In this work, we have studied the ability of a series of simple Eu(3+) complexes to enter cells overexpressing or not the ABCB1 (P-gp or P-glycoprotein) protein, which is expressed at the BBB and in human embryonic astrocytes. The intracellular uptake of the Eu(3+) complexes of linear and macrocyclic polyaminocarboxylate ligands with different charges and lipophilicities was followed by atomic absorption spectrometry. Based on biochemical argument, we propose that lipophilic contrast agents can be efficiently taken up by cells and accumulate inside mitochondria when they are positively charged. The important point is that they are not P-gp substrates, which is one of the major obstacles for them to cross the BBB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.