Abstract

Dissolved organic matter (DOM) plays a significant role in the reduction of snow albedo and the acceleration of snowmelt, but its accumulation in snow remains poorly understood. This study investigated the accumulation of DOM in seasonal snow including its accumulation rate, molecular characteristics, and biological and chemical processing. Sixteen snow samples of both fresh and aged snow were collected at one-day interval in Changchun, a typical industrial city in NE China. The snow DOM contents increased linearly with accumulation time at a rate of 30.3 μg L-1 d-1. The optical properties, including fluorescence intensity and optical absorption coefficient, of snowmelt increased exponentially with time owing to the rapid accumulation of terrestrial humic-like fluorophores through snow-soil exchange and deposition of soil-derived substances. Fourier transform-ion cyclotron resonance-mass spectrometry highlighted the properties of DOM at a molecular level, indicating that compounds derived from underlying soil and vascular plants make the largest contribution to DOM. Microbe-derived compounds contribute 35.5 % to the DOM pool. Degrees of saturation and oxidation increase slightly after accumulation, with the impacts of photo- and bio-chemistry on DOM molecules being non-negligible. This study provides a new perspective concerning the accumulation and fate of organic contaminants in snow ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call