Abstract

Carotenoids have the potential to improve the human health which leads to an increasing consumer demand for carotenoid-rich vegetables. The implementation of new, less energy-consuming vegetable production systems using artificial light such as light-emitting diodes (LEDs) is essential. In the present study, pak choi (Brassica rapa ssp. chinensis ‘Black Behi’) sprouts were grown under a combination of blue and white LEDs, red and white LEDs or only white LEDs for 7 days. Total carotenoid levels of ~ 700 ng/mg DM were measured under white LEDs. The combination of blue and white LEDs increased the carotenoid levels by ~ 15% in comparison to only white LEDs, while red and white LEDs reduced them. The transcript levels of important carotenoid metabolism-related genes were enhanced under blue and white LEDs. Phytoene measurement after Norflurazon-treatment, a phytoene desaturase inhibitor, revealed that phytoene increased by 38% (37.5 µM Norflurazon) and by 56% (50.0 µM Norflurazon) after growth under blue and white LEDs in comparison to only white LEDs suggesting an up-regulation of the upper carotenoid biosynthetic pathway. Thus, the transcript levels and the enhanced phytoene levels correlated well with the higher accumulation of carotenoids under blue and white LEDs. Furthermore, a comparison to sprouts grown under blue LEDs without additional white LEDs showed that blue light alone does not increase the phytoene levels after Norflurazon-treatment. Overall, this study demonstrated a beneficial effect of a higher blue light percentage in growing carotenoid-rich pak choi sprouts, and implies that an increased biosynthesis within the upper carotenoid biosynthetic pathway is responsible for the enhanced carotenoid accumulation.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call