Abstract

BackgroundPrevious studies have shown clinical relevance of programmed death-ligand 1 (PD-L1) and soluble PD-L1 (sPD-L1) in human cancers. However, still contradictory results exist. Our aim was evaluation of PD-L1-expressing monocytic myeloid-derived suppressor cells (M-MDSCs), monocytes/macrophages (MO/MA), tumour cells (TC) and immune/inflammatory cells (IC) as well as investigation of the sPD-L1 in ovarian cancer (OC) patients.MethodsThe group of 74 pretreatment women were enrollment to the study. The expression of PD-L1 on M-MDSCS and MO/MA was assessed by flow cytometry. The profile of sPD-L1 was examined with ELISA. The expression of PD-L1 in mononuclear cells (MCs) was analyzed using real time PCR. PD-L1 immunohistochemical analysis was prepared on TC and IC. An in silico validation of prognostic significance of PD-L1 mRNA expression was performed based microarray datasets.ResultsOC patients had significantly higher frequency of MO/MA versus M-MDSC in the blood, ascites and tumour (each p < 0.0001). In contrast, PD-L1 expression was higher on M-MDSCs versus MO/MA in the blood and ascites (each p < 0.0001), but not in the tumour (p > 0.05). Significantly higher accumulation of blood-circulating M-MDSC, MO/MA, PD-L1+M-MDSC, PD-L1+MO/MA and sPD-L1 was observed in patients versus control (p < 0.001, p < 0.05, p < 0.001, p < 0.001 and p < 0.0001, respectively). Accumulation of these factors was clinicopathologic-independent (p > 0.05). The expression of PD-L1 was significantly higher on IC versus TC (p < 0.0001) and was clinicopathologic-independent (p > 0.05) except higher level of PD-L1+TC in the endometrioid versus mucinous tumours. Interestingly, blood-circulating sPD-L1 positively correlated with PD-L1+M-MDSCs (p = 0.03) and PD-L1+MO/MA (p = 0.02) in the blood but not with these cells in the ascites and tumours nor with PD-L1+TC/IC (each p > 0.05). PD-L1 and sPD-L1 were not predictors of overall survival (OS; each p > 0.05). Further validation revealed no association between PD-L1 mRNA expression and OS in large independent OC patient cohort (n = 655, p > 0.05).ConclusionsAlthough PD-L1 may not be a prognostic factor for OC, our study demonstrated impaired immunity manifested by up-regulation of PD-L1/sPD-L1. Furthermore, there was a positive association between PD-L1+ myeloid cells and sPD-L1 in the blood, suggesting that sPD-L1 may be a noninvasive surrogate marker for PD-L1+myeloid cells immunomonitoring in OC. Overall, these data should be under consideration during future clinical studies/trials.

Highlights

  • Previous studies have shown clinical relevance of programmed death-ligand 1 (PD-L1) and soluble PD-L1 in human cancers

  • We examined the frequency of two populations of myeloid cells. i.e. HLA-DR−/lowCD14+ M-Myeloidderived suppressor cells (MDSCs) and HLA-DR+CD14+ MO/MA among mononuclear cells (MCs) isolated from the three tumour microenvironments (TMEs) including blood, ascites and tumour tissue

  • The abundance of bloodcirculating monocytic myeloid-derived suppressor cells (M-MDSCs) and MO/MA was higher in low I/II (p < 0.001 and p < 0.05, respectively) and advanced III/IV (p < 0.01 and p < 0.05, respectively) stages (Fig. 2a), grade II (p < 0.01 and p < 0.05, respectively) and III (p < 0.01 and p < 0.05, respectively) tumours compared with healthy women (Fig. 2b)

Read more

Summary

Introduction

Previous studies have shown clinical relevance of programmed death-ligand 1 (PD-L1) and soluble PD-L1 (sPD-L1) in human cancers. Our aim was evaluation of PD-L1-expressing monocytic myeloid-derived suppressor cells (M-MDSCs), monocytes/macrophages (MO/MA), tumour cells (TC) and immune/inflammatory cells (IC) as well as investigation of the sPD-L1 in ovarian cancer (OC) patients. Notwithstanding, there is growing body of evidence presented by our and other research groups about the dynamic and complex immunosuppressive network in the TMEs of human ovarian cancer [2,3,4,5]. The barrier presented by immunosuppression in the ovarian TMEs lead to disappointing results of immunotherapy and is one of the biggest challenges for successful immunotherapy to prevent recurrence of disease and progression after debulking surgery and chemotherapy

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call