Abstract

The mechanisms by which accelerated electrons accumulate in flare loops with regard to the observed time delays between peaks of prolonged (≫1 s) hard X-ray pulses with different energies are considered. The focus is on an analysis of electron pitch-angle scattering by background plasma particles and/or turbulent pulsations in extreme cases of frequent and rare collisions. It was shown that it is difficult to explain the origination of time delays in the scope of a diffusion model when the electron free path length (l) in the corona is smaller than the flare loop length (L). The accumulation of energetic particles in loops at l > L is related to a trap-plus-precipitation model in which the regime of weak pitch angle diffusion of trapped electrons in the loss cone predominates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.