Abstract

Zeins, the seed storage proteins of maize, are a group of alcohol-soluble polypeptides of different molecular masses that share a similar amino acid composition but vary in their sulfur amino acid composition. They are synthesized on the rough endoplasmic reticulum (ER) in the endosperm and are stored in ER-derived protein bodies. Our goal is to balance the amino acid composition of the methionine-deficient forage legumes by expressing the sulfur amino acid-rich 15-kD zeins in their leaves. However, it is crucial to know whether this protein would be stable in nonseed tissues of transgenic plants. The major focus of this paper is to compare the accumulation pattern of the 15-kD zein protein with a vacuolar targeted seed protein, [beta]-phaseolin, in nonseed tissues and to determine the basis for its stability/instability. We have introduced the 15-kD zein and bean [beta]-phaseolin-coding sequences behind the 35S cauliflower mosaic virus promoter into tobacco (Nicotiana tabacum) and analyzed the protein's accumulation pattern in different tissues. Our results demonstrate that the 15-kD seed protein is stable not only in seeds but in all nonseed tissues tested, whereas the [beta]-phaseolin protein accumulated only in mid- and postmaturation seeds. Interestingly, zein accumulates in novel protein bodies both in the seeds and in nonseed tissues. We attribute the instability of the [beta]-phaseolin protein in nonseed tissues to the fact that it is targeted to protease-rich vacuoles. The stability of the 15-kD zein could be attributed to its retention in the ER or to the protease-resistant nature of the protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.