Abstract

Objective. The present study was conducted to evaluate the relationship between plasma oxidative stress markers such as malondialdehyde (MDA) and glutathione (GSH), inflammatory marker pentraxin-3 (PTX3), and cerebellar accumulation of α-synuclein in streptozotocin- (STZ-) induced diabetes model in rats. Methods. Twelve rats were included in the study. Diabetes (n = 6) was induced with a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg). Diabetes was verified after 48 h by measuring blood glucose levels. Six rats served as controls. Following 8 weeks, rats were sacrificed for biochemical and immunohistochemical evaluation. Results. Plasma MDA levels were significantly higher in diabetic rats when compared with the control rats (p < 0.01), while plasma GSH levels were lower in the diabetic group than in the control group (p < 0.01). Also, plasma pentraxin-3 levels were statistically higher in diabetic rats than in the control rats (p < 0.01). The analysis of cerebellar α-synuclein immunohistochemistry showed a significant increase in α-synuclein immunoexpression in the diabetic group compared to the control group (p < 0.01). Conclusion. Due to increased inflammation and oxidative stress in the chronic period of hyperglycemia linked to diabetes, there may be α-synuclein accumulation in the cerebellum and the plasma PTX3 levels may be assessed as an important biomarker of this situation.

Highlights

  • Diabetes mellitus (DM) is one of the most common metabolic diseases caused by insulin deficiency or resistance [1]

  • Data are expressed as mean ± SEM. ∗p < 0.01, ∗∗p < 0.0001, control group compared with diabetic rats

  • The most important result obtained in our study is that oxidative stress marker (MDA) and inflammatory marker (PTX3) were significantly high in rats with hyperglycemia induced with STZ, and related to this, interestingly, αsynuclein immunoexpression was greater in the cerebellum of hyperglycemic rats

Read more

Summary

Objective

The present study was conducted to evaluate the relationship between plasma oxidative stress markers such as malondialdehyde (MDA) and glutathione (GSH), inflammatory marker pentraxin-3 (PTX3), and cerebellar accumulation of αsynuclein in streptozotocin- (STZ-) induced diabetes model in rats. Plasma pentraxin-3 levels were statistically higher in diabetic rats than in the control rats (p < 0.01). The analysis of cerebellar α-synuclein immunohistochemistry showed a significant increase in α-synuclein immunoexpression in the diabetic group compared to the control group (p < 0.01). Due to increased inflammation and oxidative stress in the chronic period of hyperglycemia linked to diabetes, there may be α-synuclein accumulation in the cerebellum and the plasma PTX3 levels may be assessed as an important biomarker of this situation

Introduction
Materials and Methods
Results
Discussion
Ethical Approval
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call