Abstract

One significant “sink” for microplastic (MP) pollution is the sediments. There's a considerable lack of reliable data regarding the historical status of MPs contamination in sediments within marine ranching. In this research, the study area encompassed Haizhou bay marine ranching and adjacent seas. The primary objective was to explore the potential relationships between the accumulation of MPs and both the sample depth and sediment characteristics within the cores. The results unveiled significant contamination of MPs within the sediment cores. The average MPs concentration of sediment was 1.01 ± 1.28 n/g. Fibrous polymers and particles smaller than 1000 μm were frequently found in the sediment. The abundance of MPs exhibited a tendency to decrease with an increase in sediment depth. Artificial reefs and currents affected on MPs distribution in sediment cores. The accumulation of MPs showed a significant correlation (P < 0.05) with the sediment content of different particle sizes, suggesting that the composition of sediment can serve as an indicator of the abundance of MPs. The risk of MP pollution in the sediments of the study area was assessed by establishing a risk assessment model using concentration data of MPs and polymer types. Due to the higher hazard score of polymers (PA and PET) in MPs, the Polymer hazard index (PHI) was elevated to grade II. However, it had a Pollution load index (PLIzone) value of 1.95 (level I). This suggested that contamination was minimal, yet the ecological risk remained relatively high. The ecological risk assessment of MPs served as the foundation for gaining a detailed understanding of the distribution characteristics of MPs. It also furnished essential data support for conducting a comprehensive assessment, developing feasible management strategies, and establishing water quality standards related to plastic waste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call